
Strategies for Strategy Game AI

Ian Lane Davis, Technical Director

Activision, Inc.
3100 Ocean Park Blvd, Santa Monica, CA 90405

idavis@activision.com, akiam@alum.dartmouth.org

Abstract
The biggest challenge in computer strategy games is the
creation of a fun computer opponent. The hardest element
of “fun” is “good”. For the Artificial Intelligence to be good,
it must do much of what a human player would do:
situational & map analysis, resource allocation, and strategy
execution. We present here the framework and some of the
strategies we have developed at Activision in the
development of games such as Dark Reign: The Future
Of War, Battlezone, Civilization: Call To Power, and
others.

Introduction
Recently at Activision we’ve had the opportunity to
develop a relatively large number of high profile military
strategy games including Dark Reign: The Future Of War,
Battlezone, and Civilization: Call To Power. Perhaps the
hardest part of developing strategy games is the design
and implementation of the Artificial Intelligence. Thus,
over the last few years we’ve developed the “Dark Reign
Model” for strategy game AI. We have applied this model
to all of our strategy games with great success and
significant code re-use. This model first breaks down the
AI tasks into Tactical AI and Strategic AI, and then further
breaks down the Strategic AI into three parts: Analysis,
Resource Allocation, and High Level AI (personality).

Problem Definition
Before describing the details of the Dark Reign Model, we
would like to define the context of the problem and our
solutions. To generate a successful computer opponent in
a strategy game (or any computer game, for that matter), it
is important to focus on what the developer’s true goal is:

Davis’ First Law of Computer Game AI: The goal of any AI
is to lose the game.

This may seem counter-intuitive! Most programmers and
researchers want to develop algorithms and approaches
that are optimal and perfect. There are two problems,
however. The first problem is that optimal is always hard
and often impossible. In classic games, such as chess and
checkers, all players can see the entire board at once,
whereas in most modern computer strategy games all
players (including the computer) have incomplete

knowledge of the location and composition of the
opponents’ pieces. And while it’s true that the AI players
can cheat knowledge, it’s very hard to hide that cheating
from players, and if the cheating is obvious, the game is not
fun. Incomplete knowledge precludes optimal decision-
making. Furthermore, in comparison to tradition games, the
number of pieces, the number of types of pieces, and the
number of actions available to each piece are colossal.
Optimal solutions such as game trees [Tanimoto87] that try
to predict several moves ahead (useful for tic-tac-toe, and
some other small games) are inappropriate and infeasible
due to the relatively enormous branching factor.

The second problem with trying to make an optimal and
perfect AI player is that, even if it were possible, it would
be undesirable. Although most players want a challenging
AI opponent, nobody likes to lose all the time . The goal is
to make the player feel threatened, but then to make the
player feel as if she has heroically fought off a superior
enemy [Millar96]. Frequently this involves pushing the
player to the edge and then intentionally backing off. Such
a tactic makes the player feel like they just barely held off
the enemy horde, but sent them fleeing with a to-the-last-
man defense.

Fortunately or not, it’s easy enough to create an AI player
that will lose a game. The trick is to make an opponent that
can create an exciting ebb and flow of power. Towards this
end, the computer player needs to be able to play a
devastatingly good game, and be able to back off when
needed. The AI must dynamically evaluate its situation,
formulate a plan, and execute it. As a final wrinkle, the AI
system must be straightforward to use, as the game’s level
designers are often non-technical.

Turn-Based versus RTS
We call our approach the Dark Reign Model because it was
first used on Dark Reign: the Future of War. In the realm
of computer games, Dark Reign is known as an RTS, or
Real-Time Strategy game. In an RTS, you can instruct a
unit, or a number of units, to move across the board, and as
they move you have time to move other pieces, and the
opponent may also move his/her/its pieces at the same
time. In contrast, Civilization: Call To Power is a Turn-
Based game, which means that only one player can move

units at a time, and within a team, only one unit moves at
once. The fundamental difference between an RTS game
and a Turn-Based game for an AI developer is that in a
Turn-Based game the feedback for any decision is
immediate: if you decide to move a unit, that unit can be
moved before anything else happens. However, in an RTS,
you can (and often have to) separate strategic troop and
resource commitment decisions from the tactical/low-level
actions of units, whereas in a Turn-Based game there is no
such distinction.

Tactical AI
Although it is not our focus here, it is worth briefly
describing the Tactical AI system for an RTS such as Dark
Reign or Battlezone. The Tactical AI in an RTS game is
tightly coupled with the core game engine. For each game,
there are several parameters (controllable by potentially
non-technical level designers) that define how aggressively
units pursue targets. In Dark Reign, the units controlled
by the AI constantly look to see if any enemy units were
nearby. If so, each unit chooses its best target and attack
it. “Best” target was defined by maximizing how much
enemy firepower could be removed from the playing field
most quickly. Thus a heavily armed, but lightly armored
unit would be an early target for the tactical AI, but a
heavily armored non-combat unit would be the last thing
shot at. As a side note, in most strategy games, the
offensive effectiveness of a unit does not diminish at all
with damage until the unit is totally removed from the game.
This means it virtually always makes sense to concentrate
firepower at one target until it’s destroyed and then to
move on to the next.

Strategic AI
The goal of the Dark Reign Model for Strategic AI is to
allow the creation of computer opponents that respond to
changes in fortune and circumstance. If a computer
opponent can retreat and regroup when things look bleak
or recognize a weakness in the enemy’s position and attack

it, then the gameplay can be vastly improved. To create this
dynamic gameplay, our strategic AI consists of three
modules, an analysis module, a resource allocation module,
and a high level AI module. The first two modules’
performance is defined by a set of parameters called an AI
Personality (AIP, pronounced “ape”), and the third module
is a logical system which is responsible for changing AIPs
when new situations arise, and for triggering special
actions based on certain events occurring. Each module
requires a different kind of AI techniques, and each is
described below.

Analysis Module
The ultimate goal of the analysis module is to define the
current strategic goals and rate them by priority. The
strategic goals can include exploration, reconnaissance,
base construction, defensive goals, and offensive goals. In
Dark Reign, the goals were geographically defined: the
map was divided into a number of regions and each region
has some offensive, defensive, information, and/or resource
values. These values are combined to make some overall
priority for each region. The analysis system would simply
tell the resource allocation system which areas troops
should be sent to (and the tactical AI handles attacks). In
Civilization: Call To Power, the goals are target-oriented,
which means that each enemy city or unit can become its
own goal. Each goal is still rated by several values. The
contribution of each value to the importance of a goal is set
by the level designer through an AIP configuration file.

The question is “How do we arrive at these values, and
what techniques are useful?” We need to know things such
as how far each spot on the map is from our empire, how far
each spot is from the enemy bases, which areas of the map
are dangerous, and which areas can we reach from which
other areas. These are map analysis problems, which are
quite similar to computer vision problems, and our
solutions come from that realm (see [Davis96] for
applications of the following techniques in computer
vision).

For example, if we want to concentrate our troops near
areas we control, we need to know how far any potential

Game Core

Analysis

High Level AI

Unit, building, terrain sightings

Unit commands

Strategic AI Allocation

Figure 1. Strategic AI Diagram

target is from those areas. The naïve approach is to look at
a target and search for the nearest piece of our territory.
This is a major computational burden, so we can use a
technique known to the computer vision community as the
grassfire algorithm [Duda73] to compute the distance to our
territory from every other spot on the map in a simple two-
pass raster scan algorithm.

Next, if we want to know how dangerous a given section of
map is, we start by finding the locations of all known enemy
troops. We can divide the map into regions and sum up the
threat value in each region. But the danger is that a region
with no enemy units in it may be next to an area filled with
enemies. Thus, we can use relaxation techniques to spread
the danger to nearby regions [Press90].

As a final example, one pitfall is that you may be able to see
a target that is strategically important, but unreachable with
your current units (such as an island when you have no
boats). Running a path finding algorithm from each unit of
yours to each potential target is too expensive, so you can
use a simple connected region extraction technique to label
each movement modality’s (air, land, water, etc.)
contiguously reachable areas. If the label for the land
under a unit is different from the label under a target, it
can’t reach the target. These regions can often be
computed once at the beginning of the game, and just
stored for constant time look up.

These are just a few examples of analysis techniques. Some
games may require more complicated statistical analyses of
terrain and troop distributions, predictive extrapolations on
the positions of troops that cannot be seen any longer,
clustering techniques for proper target definitions, etc.
Various computational geometry techniques such as
Voronoi diagrams and convex hull techniques are also
applicable for computing distance related metrics and
cluster analysis [Preparata85]. The goals of the analysis are
simple, however: find the enemy & rank targets by
importance.

Resource Allocation
The resource allocation module takes the strategic goals
from the analysis module, and allocates available troops to
those goals. This module outputs commands to the Tactical
AI (or directly to the units). This system handles matching
forces against enemy forces, taking over terrain resources,
attacking and defending bases, etc. The actual decision on
what troops to use for what happens here.

The simple Bipartite Matching problem
Matching our available forces to our strategic goals can be
thought of as a variant on the bipartite matching problem
[see Sedgewick92]. In that problem, you have resources
that you must maximally match to some set of tasks (see
Figure 2). For us, the resources are the groups of units
(and the individual units) and the tasks are the strategic
goals, such as “attack/counter an enemy group” or “take

over a mineral mine”. In the simplest version of the
bipartite matching problem, you construct a graph (a
collection of nodes and direction connections between
them) in which each resource that is capable of addressing
a task is connected to that task, as in Figure 2.

Our matching problem
Our matching problem is a bit more involved for a few main
reasons. First, each task (strategic goal) can require a
different amount of resources (troop strength &
composition) to accomplish. Second, each resource (group
of our units) can have a different ability to satisfy each goal
(troop strength and composition). Third, some tasks are
more important than others. Also, if we cannot commit
enough resources to a task to fully achieve the goal of that
task, we do not want to commit any units (an insufficient
force) to that task. Thus, we are not concerned with just
committing the maximum amount of resources to tasks, but
we also prefer to achieve the most important strategic goals
before the less important ones. Two more wrinkles are that
a single group’s forces could be split between two tasks,
and/or a single task could be tackled by forces from a
number of different groups.

There are many possible solutions to this problem. Our
solutions tend to be variants on network flow solutions
[see Sedgewick92]. Not only are all of the goals ranked in
priority, but all of the matches between troops and goals
are ranked, too. The largest term in the match’s scores is
the raw goal priority, but the appropriateness of a particular
unit type and the distance from each unit to the goal (for
example) also contribute. This helps a unit right next to a
medium priority target choose that goal instead of a high
priority one very far away. We run a greedy network flow
bipartite matching algorithm to commit troops to particular

Figure 2. Resource Allocation: Here we have four units
(resources) and five targets (goals).

R

R

R

R

G

G

G

G

G

goals. In an RTS such as Dark Reign, after the full graph is
matched as best as we can, we send all the troops on their
way. For a Turn-Based game, in which one decision can
immediately affect our next decision, as soon as one goal is
satisfied (has enough troops) we send them immediately,
and then update some of the other matches based on the
results of our action.

High Level AI
The final system of the Strategic AI for strategy games is
what we call the High Level AI. The High Level is
responsible for switching AI modes and personalities. It
can look at large scale factors (such as the ratio of our
strength to the enemies’ strengths) to set major modes
through AIPs (an AIP that favors defense or one that
wants to explore). It can also be used to set specific
triggers in the game; this allows the designer to specify
commands such as, “when an enemy enters this region,
attack with these forces”.

The High Level system can be anything from a simple Finite
State Machine [Sedgewick92] to a Rules-Based System
[Charniak86] to a Fuzzy Logic System [Kosko97], or
something even more complex. In building a system, two
things should be kept in mind. First, level designers who
can be largely non-technical will need to tweak the
parameters of the High Level AI frequently, if not write the
rules/FSMs themselves. Thus, debugging ease and
readability should be principal concerns. Second, the
system is only as good as its inputs and outputs.

For outputs, you may be able to use just switching AIPs,
but we found it necessary to supplement that action with
some to control particular mission/map specific troops for
Dark Reign. One of the advantages that a human player
has over the computer is that the human can remember
what happened in the last game played on a particular map.
Thus, the level designer may want to program into the High
Level AI some map knowledge (for example, “If the enemy
troops pass over the southernmost bridge, we should send
troops to attack the northwest quadrant”). For inputs, you
will want some simple things such as Overall Threat, Power
Ratio (our strength to the enemy’s strength), Game Time,
etc. But more specific inputs and triggers may be required:
the enemy is in a pre-defined region, when some particular
units of ours are destroyed, or when the enemy has created
a super weapon.

Conclusions
The Dark Reign Model breaks down strategy game AI into
Tactical and Strategic AI, and further decomposes Strategic
AI into Analysis, Allocation, and High Level (personality).
Even in a broad overview such as this, it should be obvious
that there are a large numb er of systems which must be
implemented, and a large number of parameters which need

to be adjusted in order to provide decent AI behavior. The
level designers must have all the tools that they need to
analyze the playing field and commit resources, but given
the complexity of the various systems and their interactions
it is also important to keep the number of parameters to
adjust manageable.

Since “decent AI behavior” is not simply winning the game
(which could be accomplished by simply giving the AI
player combat or resource advantages), the AI players must
be designed with some subtlety. The goal is to provide an
entertaining, challenging, and defeatable foe. Following the
Dark Reign Model we’ve been able to create a number of
successful games played by hundreds of thousands of
gamers (and even with significant code re-use).

Acknowledgements
The author would like to thank Gordon Moyes, Karl
Meissner, and Richard Myers for their work and
contributions to the Dark Reign Model and their own
innovative strategic AI work, and Scott Lahman, VP of
Production for supporting advanced AI work at Activision
and encouraging the publication of results.

References
[Charniak86] E. Charniak and D. McDermott, An
Introduction to Artificial Intelligence, Addison-Wesley,
1986.

[Davis96] I. Davis, A Modular Neural Network
Approach to Autonomous Navigation, Ph.D. diss.,
Robotics, School of Computer Science, Carnegie Mellon
University, 1996.

[Duda73] R. Duda and P. Hart, Pattern Classification and
Scene Analysis, Wiley and Sons, 1973.

[Kosko97] B. Kosko, Fuzzy Engineering, Prentice Hall
Press, 1997.

[Millar96] R. Millar and J. Watkins III, Personal
discussions, 1996.

[Preparata85] F. P. Preparata and M. I. Shamos,
Computational Geometry: An Introduction, Springer-
Verlag, 1985.

[Press90] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vatterling, Numerical Recipes in C, Cambridge
University Press, Cambridge, 1990.

[Sedgewick92] R. Sedgewick, Algorithms in C++,
Addison-Wesley, 1992.

[Tanimoto87] S. Tanimoto, The Elements of Artificial
Intelligence, Computer Science Press, Rockville, Maryland,
1987.

