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Abstract 
The biggest challenge in computer strategy games is the 
creation of a fun computer opponent.  The hardest element 
of “fun” is “good”.  For the Artificial Intelligence to be good, 
it must do much of what a human player would do: 
situational & map analysis, resource allocation, and strategy 
execution.  We present here the framework and some of the 
strategies we have developed at Activision in the 
development of games such as Dark Reign: The Future 
Of War, Battlezone, Civilization: Call To Power, and 
others. 

Introduction 
Recently at Activision we’ve had the opportunity to 
develop a relatively large number of high profile military 
strategy games including Dark Reign: The Future Of War, 
Battlezone, and Civilization: Call To Power.  Perhaps the 
hardest part of developing strategy games is the design 
and implementation of the Artificial Intelligence.  Thus, 
over the last few years we’ve developed the “Dark Reign 
Model” for strategy game AI.  We have applied this model 
to all of our strategy games with great success and 
significant code re-use.  This model first breaks down the 
AI tasks into Tactical AI and Strategic AI, and then further 
breaks down the Strategic AI into three parts: Analysis, 
Resource Allocation, and High Level AI (personality). 

Problem Definition 
Before describing the details of the Dark Reign Model, we 
would like to define the context of the problem and our 
solutions.  To generate a successful computer opponent in 
a strategy game (or any computer game, for that matter), it 
is important to focus on what the developer’s true goal is: 

Davis’ First Law of Computer Game AI: The goal of any AI 
is to lose the game. 

This may seem counter-intuitive!  Most programmers and 
researchers want to develop algorithms and approaches 
that are optimal and perfect.  There are two problems, 
however.  The first problem is that optimal is always hard 
and often impossible.  In classic games, such as chess and 
checkers, all players can see the entire board at once, 
whereas in most modern computer strategy games all 
players (including the computer) have incomplete 

knowledge of the location and composition of the 
opponents’ pieces.  And while it’s true that the AI players 
can cheat knowledge, it’s very hard to hide that cheating 
from players, and if the cheating is obvious, the game is not 
fun.  Incomplete knowledge precludes optimal decision-
making.  Furthermore, in comparison to tradition games, the 
number of pieces, the number of types of pieces, and the 
number of actions available to each piece are colossal.  
Optimal solutions such as game trees [Tanimoto87] that try 
to predict several moves ahead (useful for tic-tac-toe, and 
some other small games) are inappropriate and infeasible 
due to the relatively enormous branching factor. 

The second problem with trying to make an optimal and 
perfect AI player is that, even if it were possible, it would 
be undesirable.  Although most players want a challenging 
AI opponent, nobody likes to lose all the time .  The goal is 
to make the player feel threatened, but then to make the 
player feel as if she has heroically fought off a superior 
enemy [Millar96]. Frequently this involves pushing the 
player to the edge and then intentionally backing off.  Such 
a tactic makes the player feel like they just barely held off 
the enemy horde, but sent them fleeing with a to-the-last-
man defense. 

Fortunately or not, it’s easy enough to create an AI player 
that will lose a game.  The trick is to make an opponent that 
can create an exciting ebb and flow of power.  Towards this 
end, the computer player needs to be able to play a 
devastatingly good game, and be able to back off when 
needed.  The AI must dynamically evaluate its situation, 
formulate a plan, and execute it.  As a final wrinkle, the AI 
system must be straightforward to use, as the game’s level 
designers are often non-technical. 

Turn-Based versus RTS 
We call our approach the Dark Reign Model because it was 
first used on Dark Reign: the Future of War.  In the realm 
of computer games, Dark Reign is known as an RTS, or 
Real-Time Strategy game.  In an RTS, you can instruct a 
unit, or a number of units, to move across the board, and as 
they move you have time to move other pieces, and the 
opponent may also move his/her/its pieces at the same 
time.  In contrast, Civilization: Call To Power is a Turn-
Based game, which means that only one player can move 



units at a time, and within a team, only one unit moves at 
once.  The fundamental difference between an RTS game 
and a Turn-Based game for an AI developer is that in a 
Turn-Based game the feedback for any decision is 
immediate: if you decide to move a unit, that unit can be 
moved before anything else happens. However, in an RTS, 
you can (and often have to) separate strategic troop and 
resource commitment decisions from the tactical/low-level 
actions of units, whereas in a Turn-Based game there is no 
such distinction. 

Tactical AI 
Although it is not our focus here, it is worth briefly 
describing the Tactical AI system for an RTS such as Dark 
Reign or Battlezone. The Tactical AI in an RTS game is 
tightly coupled with the core game engine.  For each game, 
there are several parameters (controllable by potentially 
non-technical level designers) that define how aggressively 
units pursue targets.  In Dark Reign, the units controlled 
by the AI constantly look to see if any enemy units were 
nearby.  If so, each unit chooses its best target and attack 
it.  “Best” target was defined by maximizing how much 
enemy firepower could be removed from the playing field 
most quickly.  Thus a heavily armed, but lightly armored 
unit would be an early target for the tactical AI, but a 
heavily armored non-combat unit would be the last thing 
shot at.  As a side note, in most strategy games, the 
offensive effectiveness of a unit does not diminish at all 
with damage until the unit is totally removed from the game.  
This means it virtually always makes sense to concentrate 
firepower at one target until it’s destroyed and then to 
move on to the next.  

Strategic AI 
The goal of the Dark Reign Model for Strategic AI is to 
allow the creation of computer opponents that respond to 
changes in fortune and circumstance.  If a computer 
opponent can retreat and regroup when things look bleak 
or recognize a weakness in the enemy’s position and attack 

it, then the gameplay can be vastly improved. To create this 
dynamic gameplay, our strategic AI consists of three 
modules, an analysis module, a resource allocation module, 
and a high level AI module.  The first two modules’ 
performance is defined by a set of parameters called an AI 
Personality (AIP, pronounced “ape”), and the third module 
is a logical system which is responsible for changing AIPs 
when new situations arise, and for triggering special 
actions based on certain events occurring.  Each module 
requires a different kind of AI techniques, and each is 
described below. 

Analysis Module  
The ultimate goal of the analysis module is to define the 
current strategic goals and rate them by priority.  The 
strategic goals can include exploration, reconnaissance, 
base construction, defensive goals, and offensive goals.  In 
Dark Reign, the goals were geographically defined: the 
map was divided into a number of regions and each region 
has some offensive, defensive, information, and/or resource 
values.  These values are combined to make some overall 
priority for each region.  The analysis system would simply 
tell the resource allocation system which areas troops 
should be sent to (and the tactical AI handles attacks). In 
Civilization: Call To Power, the goals are target-oriented, 
which means that each enemy city or unit can become its 
own goal.  Each goal is still rated by several values. The 
contribution of each value to the importance of a goal is set 
by the level designer through an AIP configuration file. 

The question is “How do we arrive at these values, and 
what techniques are useful?” We need to know things such 
as how far each spot on the map is from our empire, how far 
each spot is from the enemy bases, which areas of the map 
are dangerous, and which areas can we reach from which 
other areas.  These are map analysis problems, which are 
quite similar to computer vision problems, and our 
solutions come from that realm (see [Davis96] for 
applications of the following techniques in computer 
vision).   

For example, if we want to concentrate our troops near 
areas we control, we need to know how far any potential 
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target is from those areas.   The naïve approach is to look at 
a target and search for the nearest piece of our territory.  
This is a major computational burden, so we can use a 
technique known to the computer vision community as the 
grassfire algorithm [Duda73] to compute the distance to our 
territory from every other spot on the map in a simple two-
pass raster scan algorithm. 

Next, if we want to know how dangerous a given section of 
map is, we start by finding the locations of all known enemy 
troops.  We can divide the map into regions and sum up the 
threat value in each region.  But the danger is that a region 
with no enemy units in it may be next to an area filled with 
enemies.  Thus, we can use relaxation techniques to spread 
the danger to nearby regions [Press90]. 

As a final example, one pitfall is that you may be able to see 
a target that is strategically important, but unreachable with 
your current units (such as an island when you have no 
boats).  Running a path finding algorithm from each unit of 
yours to each potential target is too expensive, so you can 
use a simple connected region extraction technique to label 
each movement modality’s (air, land, water, etc.) 
contiguously reachable areas.  If the label for the land 
under a unit is different from the label under a target, it 
can’t reach the target.  These regions can often be 
computed once at the beginning of the game, and just 
stored for constant time look up. 

These are just a few examples of analysis techniques.  Some 
games may require more complicated statistical analyses of 
terrain and troop distributions, predictive extrapolations on 
the positions of troops that cannot be seen any longer, 
clustering techniques for proper target definitions, etc.  
Various computational geometry techniques such as 
Voronoi diagrams and convex hull techniques are also 
applicable for computing distance related metrics and 
cluster analysis [Preparata85]. The goals of the analysis are 
simple, however: find the enemy & rank targets by 
importance. 

Resource Allocation 
The resource allocation module takes the strategic goals 
from the analysis module, and allocates available troops to 
those goals. This module outputs commands to the Tactical 
AI (or directly to the units).  This system handles matching 
forces against enemy forces, taking over terrain resources, 
attacking and defending bases, etc.  The actual decision on 
what troops to use for what happens here. 

The simple Bipartite Matching problem 
Matching our available forces to our strategic goals can be 
thought of as a variant on the bipartite matching problem 
[see Sedgewick92].  In that problem, you have resources 
that you must maximally match to some set of tasks (see 
Figure 2).  For us, the resources are the groups of units 
(and the individual units) and the tasks are the strategic 
goals, such as “attack/counter an enemy group” or “take 

over a mineral mine”.  In the simplest version of the 
bipartite matching problem, you construct a graph (a 
collection of nodes and direction connections between 
them) in which each resource that is capable of addressing 
a task is connected to that task, as in Figure 2. 

 
 

Our matching problem 
Our matching problem is a bit more involved for a few main 
reasons.  First, each task (strategic goal) can require a 
different amount of resources (troop strength & 
composition) to accomplish.  Second, each resource (group 
of our units) can have a different ability to satisfy each goal 
(troop strength and composition). Third, some tasks are 
more important than others.  Also, if we cannot commit 
enough resources to a task to fully achieve the goal of that 
task, we do not want to commit any units (an insufficient 
force) to that task.  Thus, we are not concerned with just 
committing the maximum amount of resources to tasks, but 
we also prefer to achieve the most important strategic goals 
before the less important ones.  Two more wrinkles are that 
a single group’s forces could be split between two tasks, 
and/or a single task could be tackled by forces from a 
number of different groups. 

There are many possible solutions to this problem.  Our 
solutions tend to be variants on network flow solutions 
[see Sedgewick92].  Not only are all of the goals ranked in 
priority, but all of the matches between troops and goals 
are ranked, too.  The largest term in the match’s scores is 
the raw goal priority, but the appropriateness of a particular 
unit type and the distance from each unit to the goal (for 
example) also contribute.  This helps a unit right next to a 
medium priority target choose that goal instead of a high 
priority one very far away.  We run a greedy network flow 
bipartite matching algorithm to commit troops to particular 

 

Figure 2. Resource Allocation: Here we have four units 
(resources) and five targets (goals). 
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goals.  In an RTS such as Dark Reign, after the full graph is 
matched as best as we can, we send all the troops on their 
way.  For a Turn-Based game, in which one decision can 
immediately affect our next decision, as soon as one goal is 
satisfied (has enough troops) we send them immediately, 
and then update some of the other matches based on the 
results of our action. 

High Level AI 
The final system of the Strategic AI for strategy games is 
what we call the High Level AI. The High Level is 
responsible for switching AI modes and personalities.  It 
can look at large scale factors (such as the ratio of our 
strength to the enemies’ strengths) to set major modes 
through AIPs (an AIP that favors defense or one that 
wants to explore).  It can also be used to set specific 
triggers in the game; this allows the designer to specify 
commands such as, “when an enemy enters this region, 
attack with these forces”. 

The High Level system can be anything from a simple Finite 
State Machine [Sedgewick92] to a Rules-Based System 
[Charniak86] to a Fuzzy Logic System [Kosko97], or 
something even more complex.  In building a system, two 
things should be kept in mind.  First, level designers who 
can be largely non-technical will need to tweak the 
parameters of the High Level AI frequently, if not write the 
rules/FSMs themselves.  Thus, debugging ease and 
readability should be principal concerns.  Second, the 
system is only as good as its inputs and outputs.   

For outputs, you may be able to use just switching AIPs, 
but we found it necessary to supplement that action with 
some to control particular mission/map specific troops for 
Dark Reign.  One of the advantages that a human player 
has over the computer is that the human can remember 
what happened in the last game played on a particular map.  
Thus, the level designer may want to program into the High 
Level AI some map knowledge (for example, “If the enemy 
troops pass over the southernmost bridge, we should send 
troops to attack the northwest quadrant”). For inputs, you 
will want some simple things such as Overall Threat, Power 
Ratio (our strength to the enemy’s strength), Game Time, 
etc.  But more specific inputs and triggers may be required: 
the enemy is in a pre-defined region, when some particular 
units of ours are destroyed, or when the enemy has created 
a super weapon.   

Conclusions 
The Dark Reign Model breaks down strategy game AI into 
Tactical and Strategic AI, and further decomposes Strategic 
AI into Analysis, Allocation, and High Level (personality).  
Even in a broad overview such as this, it should be obvious 
that there are a large numb er of systems which must be 
implemented, and a large number of parameters which need 

to be adjusted in order to provide decent AI behavior. The 
level designers must have all the tools that they need to 
analyze the playing field and commit resources, but given 
the complexity of the various systems and their interactions 
it is also important to keep the number of parameters to 
adjust manageable.  

Since “decent AI behavior” is not simply winning the game 
(which could be accomplished by simply giving the AI 
player combat or resource advantages), the AI players must 
be designed with some subtlety.  The goal is to provide an 
entertaining, challenging, and defeatable foe. Following the 
Dark Reign Model we’ve been able to create a number of 
successful games played by hundreds of thousands of 
gamers (and even with significant code re-use). 
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